Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(4)2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-37189363

RESUMO

Lowe Syndrome (LS) is a condition due to mutations in the OCRL1 gene, characterized by congenital cataracts, intellectual disability, and kidney malfunction. Unfortunately, patients succumb to renal failure after adolescence. This study is centered in investigating the biochemical and phenotypic impact of patient's OCRL1 variants (OCRL1VAR). Specifically, we tested the hypothesis that some OCRL1VAR are stabilized in a non-functional conformation by focusing on missense mutations affecting the phosphatase domain, but not changing residues involved in binding/catalysis. The pathogenic and conformational characteristics of the selected variants were evaluated in silico and our results revealed some OCRL1VAR to be benign, while others are pathogenic. Then we proceeded to monitor the enzymatic activity and function in kidney cells of the different OCRL1VAR. Based on their enzymatic activity and presence/absence of phenotypes, the variants segregated into two categories that also correlated with the severity of the condition they induce. Overall, these two groups mapped to opposite sides of the phosphatase domain. In summary, our findings highlight that not every mutation affecting the catalytic domain impairs OCRL1's enzymatic activity. Importantly, data support the inactive-conformation hypothesis. Finally, our results contribute to establishing the molecular and structural basis for the observed heterogeneity in severity/symptomatology displayed by patients.


Assuntos
Síndrome Oculocerebrorrenal , Humanos , Síndrome Oculocerebrorrenal/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/química , Mutação , Mutação de Sentido Incorreto , Fenótipo
3.
PLoS One ; 13(2): e0192635, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29444177

RESUMO

Lowe syndrome is an X-linked condition characterized by congenital cataracts, neurological abnormalities and kidney malfunction. This lethal disease is caused by mutations in the OCRL1 gene, which encodes for the phosphatidylinositol 5-phosphatase Ocrl1. While in the past decade we witnessed substantial progress in the identification and characterization of LS patient cellular phenotypes, many of these studies have been performed in knocked-down cell lines or patient's cells from accessible cell types such as skin fibroblasts, and not from the organs affected. This is partially due to the limited accessibility of patient cells from eyes, brain and kidneys. Here we report the preparation of induced pluripotent stem cells (iPSCs) from patient skin fibroblasts and their reprogramming into kidney cells. These reprogrammed kidney cells displayed primary cilia assembly defects similar to those described previously in cell lines. Additionally, the transcription factor and cap mesenchyme marker Six2 was substantially retained in the Golgi complex and the functional nuclear-localized fraction was reduced. These results were confirmed using different batches of differentiated cells from different iPSC colonies and by the use of the human proximal tubule kidney cell line HK2. Indeed, OCRL1 KO led to both ciliogenesis defects and Six2 retention in the Golgi complex. In agreement with Six2's role in the suppression of ductal kidney lineages, cells from this pedigree were over-represented among patient kidney-reprogrammed cells. We speculate that this diminished efficacy to produce cap mesenchyme cells would cause LS patients to have difficulties in replenishing senescent or damaged cells derived from this lineage, particularly proximal tubule cells, leading to pathological scenarios such as tubular atrophy.


Assuntos
Diferenciação Celular , Cílios/patologia , Complexo de Golgi/metabolismo , Proteínas de Homeodomínio/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Rim/patologia , Proteínas do Tecido Nervoso/metabolismo , Síndrome Oculocerebrorrenal/patologia , Linhagem da Célula , Humanos
4.
Traffic ; 15(10): 1031-56, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25040720

RESUMO

The primary cilium (PC) is a very dynamic hair-like membrane structure that assembles/disassembles in a cell-cycle-dependent manner and is present in almost every cell type. Despite being continuous with the plasma membrane, a diffusion barrier located at the ciliary base confers the PC properties of a separate organelle with very specific characteristics and membrane composition. Therefore, vesicle trafficking is the major process by which components are acquired for cilium formation and maintenance. In fact, a system of specific sorting signals controls the right of cargo admission into the cilia. Disruption to the ciliary structure or its function leads to multiorgan diseases known as ciliopathies. These illnesses arise from a spectrum of mutations in any of the more than 50 loci linked to these conditions. Therefore, it is not surprising that symptom variability (specific manifestations and severity) among and within ciliopathies appears to be an emerging characteristic. Nevertheless, one can speculate that mutations occurring in genes whose products contribute to the overall vesicle trafficking to the PC (i.e. affecting cilia assembly) will lead to more severe symptoms, whereas those involved in the transport of specific cargoes will result in milder phenotypes. In this review, we summarize the trafficking mechanisms to the cilia and also provide a description of the trafficking defects observed in some ciliopathies which can be correlated to the severity of the pathology.


Assuntos
Cílios/metabolismo , Transtornos da Motilidade Ciliar/genética , Doenças Renais Policísticas/genética , Animais , Cílios/patologia , Transtornos da Motilidade Ciliar/metabolismo , Humanos , Doenças Renais Policísticas/metabolismo , Transporte Proteico
6.
Curr Opin Cell Biol ; 15(2): 184-90, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12648674

RESUMO

Ubiquitin is a small protein that can be covalently linked to itself or other proteins, either as single ubiquitin molecules or as chains of polyubiquitin. Addition of ubiquitin to a target protein requires a series of enzymatic activities (by ubiquitin-activating, -conjugating and -ligating enzymes). The first function attributed to ubiquitin was the covalent modification of misfolded cytoplasmic proteins, thereby directing proteasome-dependent proteolysis. More recently, additional functions have been ascribed to ubiquitin and ubiquitin-related proteins. Ubiquitin directs specific proteins through the endocytic pathway by modifying cargo proteins, and possibly also components of the cytoplasmic protein trafficking machinery.


Assuntos
Cisteína Endopeptidases/metabolismo , Células Eucarióticas/metabolismo , Complexos Multienzimáticos/metabolismo , Peptídeo Hidrolases/metabolismo , Transporte Proteico/fisiologia , Ubiquitina/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Endocitose/fisiologia , Humanos , Complexo de Endopeptidases do Proteassoma , Receptores de Superfície Celular/fisiologia
7.
J Biol Chem ; 278(12): 10737-43, 2003 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-12529323

RESUMO

In addition to its well known role in targeting proteins for proteasomal degradation, ubiquitin (Ub) is also involved in promoting internalization of cell surface proteins into the endocytic pathway. Moreover, putative Ub interaction motifs (UIMs) as well as Ub-associated (UBA) domains have been identified in key yeast endocytic proteins (the epsins Ent1 and Ent2, and the Eps15 homolog Ede1). In this study, we characterized the interaction of Ub with the Ede1 UBA domain and with the UIMs of Ent1. Our data suggest that the UIMs and the UBA are involved in binding these proteins to biological membranes. We also show that the Ent1 ENTH domain binds to phosphoinositides in vitro and that Ent1 NPF motifs interact with the EH domain-containing proteins Ede1 and Pan1. Our findings indicate that the ENTH domain interaction with membrane lipids cooperates with the binding of membrane-associated Ub moieties. These events may in turn favor the occurrence of other interactions, for instance EH-NPF recognition, thus stabilizing networks of low affinity binding partners at endocytic sites.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Transporte/química , Membrana Celular/metabolismo , Endocitose , Modelos Moleculares , Fosfatidilinositóis/metabolismo , Proteínas de Saccharomyces cerevisiae , Ubiquitina/metabolismo , Proteínas de Transporte Vesicular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...